
CZTI calibration data processing

Varun Bhalerao, Nilkanth Vagshette

Document version 4, April 16, 2015

Contents

1 Overview 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Data reduction 5
2.1 Basic codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 proc raw2evt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Data analysis 6
3.1 basicproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 quadprod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Data products 8
4.1 Dead-noisy lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1A Dead lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1B Noisy lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Flickering pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Spectroscopically bad pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Gain-offset calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4A gainoffset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4B linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 Gain–offset corrected spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.6 Module stability tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Codes 13
5.1 alphaveto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 apixmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2A List mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2B Counts mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 fitline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4 peakfind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 rcspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 groupspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 perfcomp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.8 threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



6 Appendix 21
A Sample testrecords.log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B Sample metadata in text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
C List of all IDL codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

History
This document describes the steps used in analysis of CZTI ground calibration data, and is

intended to be a quickstart manual for intermediate / advanced users.

Version 1 Initial document (Varun).

Version 2 Incremental updates after CZTI meeting (10 March 2015)

Version 3 Added some sections, first complete draft

Version 4 First circulation–ready version

2



Part 1

Overview
This document is a summary of the steps used in processing the ground calibration data for the
Cadmium Zinc Telluride Imager (CZTI) on board the Astrosat satellite. This is not a complete
manual for all the software used in this process, and is not meant to be a guide for beginners.
Instead, this document is a quick reference point for users who are familiar with the overall
scheme, and are interested in specifics of commands.

We start with a overview of the steps in this part. In Part 2 we discuss data reduction, viz.
conversion of the raw binary data to FITS files. Part 3 describes conversion of those files into
several health and monitoring data products, as well as creation of calibration products. Part 4
provides consolidated information about location and nature of key data products. Finally,
Part 5 gives short descriptions of some codes that were not discussed in detail elsewhere in this
document.

Commands and filenames are listed in typewriter text in this document. Code snippets or
long commands are denoted in code blocks:

sample command infilename outfilename

Data and code locations are specified in all sections, marked in blue:

All data are located at /data2/cztidata/ on the rohini server.

1.1 Background

The Cadmium Zinc Telluride Imager (CZTI) is a coded aperture mask imaging instrument
on board Astrosat. It consists of four identical quadrants, each with sixteen CZT modules
(detectors). Each of these 64 detectors is a 39.06 mm wide square divided into a 16× 16 array
of pixels. The central 14 pixels are 2.46 mm wide, while the side pixels are only 2.31 mm.

These detectors underwent extensive ground calibration and testing for characterizing their
spectral and imaging response. Calibration data were primarily acquired in TIFR1 and VSSC2.
The TIFR data were used for shortlisting modules (detectors) to populate six test quadrants.
These modules were then tested further at VSSC to select the final 64 flight modules. Flight
modules were calibrated using various radioactive sources (241Am, 133Ba, 109Cd, 57Co) at multiple
temperatures. They were also subjected to thermal cycling, and compared in a before/after
performance analysis. In this document, we restrict ourselves to the data reduction and analysis
of these final 64 modules. The results of these calibrations are documented elsewhere.

1.2 Data flow

Raw data is saved in a binary format in the laboratory. This data is uploaded to the rohini

server at IUCAA through the garuda network, or through another NKN3 conduit. The raw data
is copied to two places: a working directory, and a backup directory. At the time of this writing,
final calibration backups are stored in /data2/cztidata/vssc tar files on rohini. Redundant
backups of the raw as well as processed data are also performed on a separate NAS server
at /czti backup/archive and /czti backup/vssc raw files respectively. A separate document,
“Astrosat / CZTI lab data structure” (or filestructure.pdf) describes the convention adopted
for file and directory names. For now, it is important to note that file and directory names contain
a timestamp. All data processing and analysis leaves the base name of the file untouched, so
that it is easy to locate the parent data set for any data product. Attempts are made to keep
relevant metadata within data products wherever feasible (eg. Appendix B).

Each contiguous data acquisition without changing operation conditions (temperature, ra-
dioactive source, etc) is called a “run”. The data set from each run is saved in a separate

1Tata Institute of Fundamental Research, http://web.tifr.res.in/~daa/XRay.html
2Vikram Sarabhai Space Center, http://www.vssc.gov.in/internet/
3National Knowledge Network

3

http://web.tifr.res.in/~daa/XRay.html
http://www.vssc.gov.in/internet/


directory. The binary data consists of two types of files: LBT (Low Bitrate Telemmetry) and HBT

(High Bitrate Telemetry). These data are first processed by a set of c codes and bash scripts and
converted into a standard FITS format (see Part 2, data reduction). The FITS files created in
this step are event files (.evt), similar to those used by ftools. These scripts also create various
auxillary files, including the .dph (Detector Pulse Histogram) files used for imaging. The data
are then processed by a suite of IDL scripts and programs (see Part 3, data analysis). These
programs create some machine-readable products (like lists of dead and noisy pixels, fits file
with spectra of all pixels in a quadrant, etc) and some human-readable products (PDF plots of
module spectra, count maps, etc.). Wherever feasible, key human-readable files are compiled
into a reports and saved in another directory. After running the usual scripts, a typical directory
structure is as follows:

[czti@rohini /data2/cztidata/vssc/FQ0/20140116 FQ0 Am3 20C 4hrs]$ ls -1

alphaveto - Event files for the veto spectrum, and

- allspec.fits.gz files with pixelwise spectra for the full quadrant

events - Main data in event format (.evt)

log - Logs of test setup and automated processing

plots - Plots produced by various analysis codes

proc - Intermediate products produced by analysis codes

raw - Raw HBT and LBT files saved in laboratory

reports - Concise collections of plots produced in batch processing

sci - Auxiliary files produced by data reduction software

Calibration data are located at /data2/cztidata/vssc on the rohini server.

All codes are under version control on a SVN server running on rohini. Within the IUCAA
network, they can be checked out from svn://192.168.11.35/czti.

4



Part 2

Data reduction
Data reduction is streamlined into a single script, proc raw2evt. In this part, we first introduce
the commands required for processing (§2.1). In practice, the user simply has to cd into the
appropriate directory and run the shell script as described in §2.2.

2.1 Basic codes

Conversion of raw data to event files is handled by two programs: rawtolevel1 and scitoevt.
rawtolevel1 takes the HBT and LBT files as input, along with “command” and “comment” files.
The latter two files are not present in typical lab data, and dummy files are used instead. The
code produces a science file (.sci), a housekeeping file (.hk), a time calibration table file (.tct)
and updates a log file. In short, this code takes the raw data stream and separates the various
functional components from it into separate files. Then, scitoevt is run to convert the separated
data frames into fits files. This code creates event files (.evt) for the CZT X-ray data as well as
the veto spectra. It also adds headers with Module IDs for all modules present.

c codes for data reduction are under version control at $SVN/trunk/code/level1.

2.2 proc raw2evt

To simplify processing, these codes are wrapped into a bash script called proc raw2evt. This
script utilizes the standard filenames and directory structures to call both rawtolevel1 and
scitoevt. This script creates output directories as required. The syntax for running this script
is simply:

proc raw2evt

The script is to be executed in the base directory for any data run. It expects that raw
data (.HBT and .LBT files) is present in ./raw, and configuration files are present in ./log. In
particular, the script checks that the ./log directory contains exactly one testrecords.log file
(Appendix A), and exactly one file ending in .config.ini. If these conditions are not met, the
script aborts with an appropriate message saved in ./log/proc raw2evt.log. The script also logs
exact commands spawned and their output in the same log file. Another important task for the
script is to give read and write permissions to the czti group, which is necessary for cztuser on
the algol server to further analyze the data.

The bash scripts for data reduction are under version control at $SVN/trunk/code/autoproc.

5



Part 3

Data analysis
The fits files created in data reduction are further analyzed with IDL codes. Typical data analysis
for a single quadrant for a single run is done by an IDL command basicproducts. This code
internally calls various codes in order to create a allspec.fits.gz file with pixel wise spectra,
and various plots and text files with count maps, module and pixel spectra, noisy and dead pixel
flagging, pixel-wise count rate plots etc. For processing datasets with multiple quadrant data,
similar functionality is provided by the quadprod command. The splitproc code attempted to
automatically separate data sets, but was not used in practice due to some issues. Use of that
code is now deprecated. In some cases, the operator manually copied the raw data into multiple
locations (for example, in the FQ0/ and FQ2 directories) and then processed it with basicproducts.

The IDL codes for data reduction are under version control at $SVN/trunk/code/analysis.

The details of running both codes follow:

3.1 basicproducts

The basicproducts command is simple:

basicproducts, ’/path/to/directory’, fitsext=fitsext

Let us consider data in /data2/cztidata/vssc/FQ0/20140116 FQ0 Am3 20C 4hrs as an example. As
the folder name suggests, this has data for FQ0: Flight Quadrant 0. By convention, this data is
stored in fits extension 1. In general, data for Quadrant N is stored in fits extension N+1. After
going to the directory, the user should start IDL and give the command,

basicproducts, ’/data2/cztidata/vssc/FQ0/20140116 FQ0 Am3 20C 4hrs’, fitsext=1

First, the code examines the testrecords.log file for determining which detectors are to be
analyzed from which files. This is useful for cases where users do not care about data for all
modules. In testrecords.log, files may labeled as ‘ALL’ or ‘BG’ in order to process all detectors.
Then, basicproducts runs the following codes in order:

1. alphaveto to convert the event file to pixel-wise spectra. This file is stored as a fits image
rather than a binary table, and can be read significantly faster by other codes.

2. countmap to create text files that list the counts in each pixel of each module. It also creates
PDF plots showing physical distribution and histogram of counts in the module.

3. countrate to generate plots showing the count rate of each pixel in the module as a function
of time

4. noisydead to create text files listing dead and noisy pixels. It also creates a plot showing
location of the dead and noisy pixels.

5. modspec to generate the spectrum of the entire module. Note that no gain-offset correction
is applied at this stage! Both: a text file containing the spectrum and a PDF plot of the
spectrum are created.

6. pixspec to create a PDF showing plots of pixel-wise spectra, 16 pixels per page.

All the plots are saved in the plots/ subdirectory, while all text files are saved in the proc/

subdirectory. The base name of the input raw file is retained, and extensions like .counts00.pdf

or .spec13.txt are added. The text files have comments at the top which describe the necessary
metadata regarding input files and any free parameters used in the code (Appendix B). Comment
lines begin with a #. After all this processing is complete for all modules, basicproducts spawns
a shell command to combine related PDFs into a single PDF in the reports/ subdirectory. A
separate report is produced for each file which has ‘ALL’ or ‘BG’ as its testrecords.log entry.

6



All the support codes called by basicproducts are under version control at
$SVN/trunk/code/analysis.

3.2 quadprod

Most of calibration data sets consist of combined data for multiple quadrants. However, each
quadrant usually had a different radioactive source, so that data analysis should still be done on
a per-quadrant basis. The usual command thus excludes the fits extension:

quadprod, ’/path/to/directory’

This functionality is provided by quadprod, short for quadrant products. Functionally, quadprod is
similar to basicproducts — it runs several standard processing steps for each quadrant in the data
file. First, the code checks for the presence of a ./log/testrecords.log file, although contents
of that file are not used in further processing. A short logfile is created at ./log/quadprod.log.
The following codes are then run for each of the four quadrants:

1. alphaveto to convert the event file to pixel-wise spectra. This file is stored as a fits image
rather than a binary table, and can be read significantly faster by other codes.

2. countmap to create text files that list the counts in each pixel of each module. It also creates
PDF plots showing physical distribution and histogram of counts in the module.

3. modspec to generate the spectrum of the entire module. Note that no gain-offset correction
is applied at this stage! Both: a text file containing the spectrum and a PDF plot of the
spectrum are created.

4. procpix to fit a line to each pixel spectrum, log the best fit parameters, and plot pixel-wise
spectra with line fit overlaid.

Unlike basicproducts, quadprod does not run countrate and noisydead. This decision was
taken as four-quadrant data were usually obtained as shorter integrations and noisier operating
conditions. Manual inspection of count rate plots was infeasible due to high data volume, and
nosiy/dead flags were unreliable due to the operating conditions.

The other difference is that pixspec is replaced by the more advanced procpix program. Here,
quadprod tries to parse the input filename to figure out if the source is one of 241Am, 133Ba, 109Cd,
or 57Co. If none of the source names matches, then quadprod instructs procpix to search for
the strongest line4 above channel 800 (∼ 39 keV), with σ ≈ 45 channels (≈ 2.2 keV, FWHM
≈ 5.2 keV).

The user can override these defaults. For example, the command to search for lines above
channel 400, with σ ≈ 30 channels is:

quadprod, ’/path/to/directory’, linepos= -400, linesig=30

If linepos is positive (eg linepos=1200), then procpix searches for a line centered at that channel.
As with basicproducts, all the plots are saved in the plots/ subdirectory, while all text

files are saved in the proc/ subdirectory. The base name of the input raw file is retained,
and extensions like .Q0.counts00.pdf or .Q3.spec13.txt are added. Note that the extensions
now contain a quadrant ID too. The text files have comments at the top which describe the
necessary metadata regarding input files and any free parameters used in the code. Comment
lines begin with a #. After all this processing is complete for all modules, quadprod spawns a shell
command to combine related PDFs into a quadrant-wise PDFs in the reports/ subdirectory.

The support codes called by quadprod are under version control at $SVN/trunk/code/analysis.

4Specifically, the code looks for the channel with maximum counts.

7



Part 4

Data products
In this section, we discuss more advanced data products, usually those that are made by com-
bining data from several runs.

4.1 Dead-noisy lists

For each individual run, a list of dead and noisy pixels is created by basicproducts (Section 3.1).
Dead pixels are defined as pixels with zero counts, and noisy pixels are 5-σ outliers to the
distribution of counts in pixels. These lists calculated for individual runs were all collated and
compared to produce master lists. The processing is done using two IDL codes, dead list and
noisy list, as described below.

4.1A Dead lists

Dead pixel lists are collated by running dead list as follows:

dead list, dirfile=’filelist.txt’, fm=’FM2’

Here, dirfile is simply a list of directories (runs) to be processed. Each line in dirfile

should be the top level directory of a run (Section 1.2), with subdirectories like log and proc

where the dead and noisy pixel lists reside.

Master lists of dead pixels are saved at /data2/cztidata/vssc/analysis/dead lists on the
rohini server.

The output file lists all pixels which were dead in every single test of that module.

4.1B Noisy lists

Noisy pixel lists can be generated in a similar format by running noisy list.pro5. However,
this process was superseded by the noisy props code. nosiy props accepts contextual inputs like
quadrant name and temperature to locate all files satisfying those conditions. If the temperature
is not specified, noisy props collates data from all temperatures. In addition, wildcard-like data
types can be specified to narrow down the data selection: for example, specifying dtype=’hr’

will select only folders like 20140118 FQ0 Cd 20C 4hrs but not 20140118 FQ0 Cd 20C stabilization

or 20140118 FQ0 Cd 20C warmup. These keywords eliminate the need for first creating a text file
listing the directories to be processed.

Master lists of noisy pixels are saved on the rohini server at
/data2/cztidata/vssc/analysis/noisystats/codebased/allquad and
/data2/cztidata/vssc/analysis/noisystats/codebased/FQ*.

noisy props generates several subdirectories in the directory which it is run. Each temper-
ature and quadrant combination gets a subdirectory of the type ./FQ0/15C or ./FQ2/alltemp.
Each subdirectory contain various files:

alltime_noisy.txt : List of pixels which were noisy in all files

frequently_noisy.txt : Pixels noisy > 75% of the time

occassionally_noisy.txt : Noisy in 25% - 75% cases

often_noisy.txt : Noisy in < 25% cases

once_noisy.txt : Noisy only once

histogram.txt : Summary of number of noisy pixels in all modules

noisystats_ ??.pdf : Plot of how often individual pixels were noisy

noisystats_ ??.txt : List of how often individual pixels were noisy

5Results from this processing are saved on the rohini server in the directory
/data2/cztidata/vssc/analysis/noisystats/codebased/all time noisy. Note that these are super-
seded by noisy props data products.

8



Detailed help can be obtained by typing “noisy props, /help”. A typical noisy props com-
mand is of the form.

noisy_props ,basedir=’/data2/cztidata/vssc/’,quadname=’FQ0’,temp=’20C’

4.2 Flickering pixels

Flickering pixels were identified by visual inspection of diagnostic plots produced by the IDL

program countrate. Machine–readable lists of these flickering pixels have the following format:

#Module no, no of noisy pixels , pixel list

#Q0:

00,5,0,31,64,143,176

01,0

02,1,16

03,1,14

04,3,1,2,16

05,4,48 ,80,143 ,208

06,0

07,1,239

08,1,128

09 ,7 ,64 ,94 ,126 ,141 ,205 ,207 ,223

10,1,227

11,2,175,241

12 ,5 ,79 ,173 ,189 ,206 ,244

13 ,14 ,9 ,30 ,34 ,36 ,50 ,61 ,63 ,155 ,171 ,224 ,228 ,235 ,251 ,252

14 ,7 ,5 ,111 ,156 ,171 ,186 ,187 ,250

15 ,12 ,1 ,30 ,46 ,47 ,62 ,63 ,93 ,169 ,171 ,190 ,237 ,242

#Q1:

00,3,49,55,185

01,0

For example, the line for FQ0 Module 2 is 02,1,16, which says that only 1 pixel is flickering, and
that is pixel number 16. On the other hand, the line 01,0 means that module 1 did not have
any flickering pixels.

Two lists of flickering pixels, before and after the thermovac tests are saved on the rohini

server at /data2/cztidata/vssc/thermovac/stability/flickering list 20140611.txt and
flickering list 20150116.txt.

These files were used in stability comparisons with plotrates.pro located in the same directory,
and referred to in Section 4.6.

4.3 Spectroscopically bad pixels

Secondly, pixel-wise spectra were visually inspected for a large number of data sets, and any
peculiarities were noted. These include noise at low energies, missing lines, etc. Detailed reports
of this inspection are saved in PDF reports with names of the form FQ1 vispix.pdf.

Detailed reports of visual pixel inspection are saved on the rohini server at
/data2/cztidata/vssc/analysis/vispix/FQn/FQn vispix.pdf. Machine–readable lists of pixel
quality are saved with files named of the form
/data2/cztidata/vssc/analysis/vispix/FQ1/15C/FQ1 mod02 15C.vispix.txt.

A sample machine–readable pixel report file, FQ1 mod02 15C.vispix.txt, is reproduced here:

# visual inspection list

# FQ1 Det02 15C

sometimes_weird

sometimes_sup_peak

9



sometimes_bad_en_resol 12 112

sometimes_low_en_noise 14

sometimes_noisy

weird 11

sup_peak

bad_en_resol

low_en_noise 0 1 8 9 15

noisy

The same directories also contain PDF maps showing the characteristics of each pixel at each
temperature. We caution that some characteristics of pixels may not be reproducible even at
the same temperature.

4.4 Gain-offset calculation

Gain and offset calculations are done in two steps. In the first step, we calculate an approximate
value of gain and offset with the gainoffset code, using 241Am (59.54 keV) and 57Co (122.06 keV)
lines. These values are then refined by fitting to all usable data sets with the linearity.

4.4A gainoffset

The gainoffset code finds the strongest peak above a certain channel number in 241Am and 57Co

data, fits Gaussian line profiles (with a fitline–like procedure, see Section 5.3) and calculates
gain and offset from these peaks. Gain and offset relate energy to channels by Equation 1:

Energy = Channels×Gain + Offset (1)

A typical gainoffset command is:

gainoffset , detid=2, $

fitsfile1 ="file1 -Am -allspec.fits.gz", line1 =59.54 , chcut1 =-700, lwidth1 =40.9, $

fitsfile2 ="file2 -Co -allspec.fits.gz", line2 =122.06 , chcut2 =-1600, lwidth2 =45.6 , $

gainfile ="gainfile -gainoffset.txt", plotgain ="plotgain -gainoffset.pdf"

where the code will look for a line1 = 59.54 keV (241Am) line above |chcut1|, viz above channel
700. It expects the nominal σ of the line to be 40.9 channels — this value is used to select
the fitting region as well as the starting guess for the fit. Similar parameters are specified for
the 57Co file. Outputs are saved as a text file in gainfile-gainoffset.txt, with plots saved to
plotgain-gainoffset.pdf.

In practice, a user will usually want to run gain–offset calculations for all temperature data
for an entire quadrant in one shot. This is facilitated by the IDL routine goAmCo. To process FQ3
data, the command is:

goAmCo , quad=3

This routine outputs data products in the default location given below:

First pass calculations of gain and offset are saved in /data2/cztidata/vssc/analysis/go AmCo

on the rohini server.
NOTE: most users should not need to access these files, see Section 4.4B about
linearity calculations.

4.4B linearity

Calibration data has been acquired for several sources: 241Am (59.54 keV), 57Co (122.06 keV,
136.47 keV), 109Cd (21.0 keV, 88.06 keV) and 133Ba (30.97 keV, 81.0 keV). We use the two–
point gain and offset values calculated in Section 4.4A as starting point to fit a straight line
through all known lines in all available data sets for every module at every temperature. Apart

10



from calculating refined gain and offset values, linearity produces several useful by–products
including plots of fits for each pixel, residuals for each pixel, maximum non-linearities for each
pixel, etc. Since several input files are used, linearity requires a filelist in a text file, specifying
the following parameters:

# This file is called filelist_sample.txt

# filename module_num energy(kev) 1sigma_linewidth(channels)

file_am.Q2.allspec.fits.gz 06 59.56 60.0

file_co.Q1.allspec.fits.gz 05 122.0 120.0

file_co.Q1.allspec.fits.gz 05 136.0 130.0

Note that module number is required on each line as some modules were relocated during final
assembly. In the example above, we are calculating data for a module which was mounted in
Quadrant 2 at position 6 while acquiring 241Am data, but moved to FQ1 position 5 while acquiring
57Co data. linearity checks module IDs wherever available6 to ensure that data for the same
module are being used throughout the calculation. A minimal call to linearity would be of the
form,

linearity , /allspec , filelist=’filelist_sample.txt’, $

gainfile=’twopoint_gainoffset.txt’, outgainfile=’new_gainoffset.txt’

linearity has several other options, which can be found by typing “linearity, /help”. This
code carries out extensive computation and can take a while to run. This can be a serious
handicap for processing data of all 64 flight modules at six temperatures each. This task is
simplified by the wrapper routine, linearity run. This routine runs linearity calculations for
a given quadrant at all temperatures. Using this code needs that filelists for all modules are
already present at predefined default locations. A typical call is of the form,

linearity_run , quadrant =1

Final values of gain and offset are saved in /data2/cztidata/vssc/analysis/gainoffset on
the rohini server.

4.5 Gain–offset corrected spectra

A useful data product for any further analysis is gain–offset corrected spectra. The IDL code
modspec7 can be used to generate such spectra on demand. modspec has several useful options
like applying pixel–wise gain–offset corrections, selecting the pixels with best energy resolution
etc. A typical data product needed for further analysis is a spectrum for each {Module, Source,
Temperature} combination. As these are intended for spectroscopic analyses rather than imag-
ing, we select only the best 90% of the pixels in each module8 for making a combined spectrum.
Such spectra were produced for all test sources (241Am, 133Ba, 109Cd and 57Co) by using the
go corr mod.pro routine in $SVN/trunk/code/analysis. The spectra are saved as text files with
comment lines (#) containing metadata, followed by two space–separated columns listing energy
and counts.

Text files and plots containing gain–offset corrected spectra for calibration data are saved at
/data2/cztidata/vssc/analysis/go corr spec on the rohini server. It contains subdirecto-
ries of the form FQ?/??C/, containing individual spectral files with names like
FQ0 mod01 ID05051 00C Cd.go corr spec.txt.

6For instance, all .allspec.fits files have module IDs in their headers.
7Some details about modspec are given in Section 5.8.
8We define the best pixels as ones having the sharpest 241Am lines at that temperature.

11



4.6 Module stability tests

We examined pre– and post–thermovac data for all quadrants to look for change in the number of
dead/noisy pixels, and found a marginal increase in their numbers. We also compared module–
level spectra in these two data sets, and found that the spectral characteristics do not vary
significantly (Figure 1). Note that more detailed comparisons were performed using perfcom,
discussed in detail in Section 5.7.

Figure 1: Comparison of pre– and post–thermovac spectral characteristics with
tvac prepost spec.

The IDL code for comparing noisy/dead pixels is plotrates.pro. The code and data products
are both located at /data2/cztidata/vssc/thermovac/stability on the rohini server. The
code for spectral comparisons is located at $SVN/trunk/users/varunb/tvac prepost spec.pro

12



Part 5

Codes
Some of the IDL codes used in data analysis are listed above. A complete listing of IDL codes is
given in Appendix C. Help for most of the codes can be obtained by simply calling them with a
/help flag, like:

countmap, /help

Here, we describe some of the codes which have not already been touched upon in Part 3.

5.1 alphaveto

The alphaveto code reads event files, and converts them into pixel-wise spectra. The spectra are
saved as 4096 × 4096 FITS images, with one row per pixel denoting the 4096 spectral channels.
Output files are named as *.allspec.fits, and are usually compressed with gzip if alphaveto

was called by basicproducts. These *.allspec.fits files have 4 extensions, corresponding to
values of the alpha flag and the veto level in data. The four extensions are described in the help
below:

alphaveto.pro , Varun Bhalerao , 2015 -01 -23

Version : 1.40000

SVN Revision : $Rev: 464 $

----- Documentation for ./ alphaveto.pro -----

pro alphaveto

INPUTS:

infile : (string) input .evt file

fitsext : (int) FITS extension number to read. Default =1

alphaveto : (string) REQUIRED name of output fits file

containing pixel -wise spectra as follows:

Ext 0 : full spectra

Ext 1 : alpha = 1, any veto

Ext 2 : alpha = 0, veto > vth

Ext 3 : alpha = 0, veto <= vth

vth : (int) Threshold for veto

Default: 50.

/help : display this message and exit

pixid = module_id * 256 + pixel_number

5.2 apixmap

apixmap is the generic code that produces all the pixel maps seen in CZTI analysis products. It
can be run in two ways: list mode and counts mode.

5.2A List mode

apixmap is run in list mode to show graphically different types of pixels, like dead and noisy
pixels. It is called with a 3×N array that denotes types of the pixels, and a legend with names
of each type. A sample output is shown in Figure 2.

The essential command for generating output like Figure 2 is as follows:

apixmap, [[0,0,0], [11,0,0], [13,9,0], [2,12,0], [1,15,0], [11,11,1]], $

legend=[’Dead’, ’Noisy’], colors=[64,252], filename=’sample.pdf’, $

title=’Dead/noisy pixels in detector 0 in somefile’, $

subtitle=’5 Dead pixels (5.0-sigma), 1 Noisy pixels (5.0-sigma)’

Colours are taken from the rainbow colortable, loaded with loadct, 13. Other documentation
for list mode is:

13



Figure 2: List mode output of apixmap.

apixmap.pro , Varun Bhalerao , 2013 -10 -03

Version : 1.13000

SVN Revision : $Rev: 405 $

----- Documentation for ./ apixmap.pro -----

aim: take pixel list with colours , and make a plot.

make a table on the right with titles and the actual list

plot type:

0,0

-----------------

| R | R

| R | 3, 1

| | 5, 2

| |

| | G

| G | 6,13

| |

-----------------

15,15

Usage:

pixelmap , pixlist , legend=legend , colors=colors , noaxes=noaxes , $

filename=filename , title=title , subtitle=subtitle

pixlist: 3*n array , with entries of type [[col ,row ,type], [col ,row ,type]]

type must be from 0 to some number K

pixlist need not be sorted in any order

for int array , pixlist = transpose ([[ intarr mod 16], [intarr /16],

[replicate (0, n_elements(intarr))]])

legend: K element array , with string names for each type

default = ’Type 0’, ’Type 1’, ...

/shortlegend: Only give legend names , don’t list pixels in the table

colors: K element array , with color indices from the RAINBOW color table

default colors are alloted if this is not specified

/noaxes:do not overlay a light grid of pixels

title : string to be displayed at top of plot

subtitle: string to be displayed at bottom of plot

footer : string to be put in lower right corner in smaller font

(usually for program name , version etc)

filename: ’/path/to/output.pdf’

/help: display this message

14



5.2B Counts mode

When called in counts mode, apixmap produces a pixel map on the left, and a histogram of counts
on the right. This mode has relevant keywords to control the data limits of the histogram and
so on. To demonstrate counts mode, we create an array of 256 random numbers (mean=0,
sigma=1) and plot it to ‘sample.pdf’.

apixmap, counts=randomn(seed, 256), dtype=’Random number’, $

countmin=-2, countmax=2, /saturate, filename=’sample.pdf’

The result is shown in Figure 3. Note how the histogram is limited to the range [-2, 2]. Pixels
like B12 which had < 2 counts are shown white. Pixels with > 2 (> countmax) counts are shown
with black hashing due to the /saturate flag.

Figure 3: Counts mode output of apixmap.

The title, subtitle etc can be specified as in list mode. The granularity of the histogram
can be controlled by numbin and binsize keywords, where binsize overrides the former.

5.3 fitline

This code fits a Gaussian to a line seen in spectra. The input spectrum is usually specified as
a space-separated two-column text file with channel number and counts, like the files produced
by modspec. Alternately, the input file may be a .evt file—in which case fitline extracts the
spectrum of a user–specified pixel in a user–specified detector. The fitting proceeds as follows:

1. User specifies a nominal line energy (linepos) and nominal one-sigma resolution (linesig).

2. fitline selects a spectrum in the range [linepos−3×linesig, linepos+3×linesig].

3. The centroid (calculated by centroid.pro) of this part of the spectrum is used as the
starting guess for line center.

4. Only data within −1σ to +2σ of this starting guess is used for fitting a Gaussian line
profile. This final fitting range can be controlled by the fitlow and fithigh parameters.
The default values −1 and +2 were selected on the basis of testing various ranges, to utilize

15



maximum counts for fitting the profile without being contaminated by the background or
X-ray tailing.

fitline returns the line center, sigma and area; with corresponding uncertainties. It can also
produce a PDF plot in a user-specified file. Detailed parameters for fitline are:

fitline.pro , Varun Bhalerao , Nilkanth V. 2015 -02 -06

Version : 1.40000

SVN Revision : $Rev: 471 $

----- Documentation for ./ fitline.pro -----

pro fitline

INPUTS: Specfiy either specfile , or the next four inputs

specfile : (string) Name of text spectrum (output by modspec etc)

Two column file listing energy , counts

fitsfile : (string) input .evt file

fitsext : (int) FITS extension number to read. Default =1

detid : (int) Id of detector for which spectrum should be

produced. Default =0

pixid : (int) Id of pixel for which spectrum should be

produced. Default =0

OUTPUTS:

sigma : (float) Returned gaussian sigma of line

err_sigma : (float) Error in returned gaussian sigma of line

center : (float) Returned centroid of line

err_center : (float) Error in returned centroid of line

linecounts : (float) Returned value of counts in line

err_linecounts : (float) Error in returned value of counts in line

plotspec : (string) optional name of the output pdf plot of

the spectrum for each pixel

OPTIONAL INPUTS:

gain : (float) Gain in keV / channel. Default 0.0488

offset : (float) Offset in keV. Default 0

[Energy] = [Channels] * gain + offset

linepos : nominal position of line in keV

linesig : nominal sigma of line in keV

fitlow : lower side range for line fit (in units of linesig)

Default: 1.

fithigh : higher side range for line fit (in units of linesig)

Default: 2.

rebin : (float array*3) Optional rebinning parameters

rebin=[ startenergy , stopenergy , binsize]

plotspec : (string) Name of output PDF plot

plotmin : Lower end of plot , in appropriate units

plotmax : Higher end of plot , in appropriate units

/base : (bool) whether to allow as additive base in the

gaussian fit for a line

/help : display this message and exit

5.4 peakfind

peakfind is a function that finds a local maxima. Given arrays y and x and a starting index
value, it first selects a region of interest till the first inflexion points on either sides of the start
point. Then, it returns the position of the highest point within this region of interest. If there
are multiple points with the highest value (possible only with a flat top), then peakfind returns
the lowest x coordinate from such values.

Note: the start point is specified as an index of the x array, but the returned value is a x
coordinate rather than an array index.

IDL > print , peakfind (/help)

answer = peakfind(x, y, start , smoothval=smoothval)

Returns the x-coordinate of the local maximum around start

Optionally smooths the data by smoothval

NOTE: start is an index , not an x value

16



5.5 rcspec

rcspec is particularly useful when looking for module–induced systematic effects in spectra, with
low SNR data. It processes a .evt file and produces plots spectra of each pixel row and each
pixel column.

rcspec.pro , Varun Bhalerao , 2013 -05 -14

Version : 1.00000

SVN Revision : $Rev: 183 $

----- Documentation for ./ rcspec.pro -----

PRO RCSPEC

Make row -wise and column -wise module level spectra

Inputs:

infile : (string) input events file

fitsext : (int) FITS extension number to read. Default =1

detid : (int) Id of detector for which count map should be

produced. Default =0

binsize : (int) binsize of output spectrum (in channels)

: default = 16

plotrange: (2-element float array)

Range of output plot in channels. Default = auto

/help : Show this help text

Outputs:

plotspec : (string) Name of pdf file to save combined spectrum to

5.6 groupspec

The modspec code mentioned in 3.1 creates spectra of an entire module. groupspec is a similar
code that can combine spectra of a select list of pixels from a single module. If a gain–offset file
is specified, then pixelwise corrections are applied before combining data. This facilitates pixel
grouping, which is used for comparing mask data with uniform illumination data (Section 5.7),
or for combining pixels with similar gain–offset values. A slight drawback is that groupspec v2.3

works only with .evt files, but not with .allspec.fits files. This makes the code execution
slower.

For facilitating easy import of spectra into other software (eg Xspec), the default output of
groupspec does not have any comments or metadata. Metadata can be added by specifying the
/longtext flag.

Similar functionality can also be achieved from modspec, using the “ignorepix” input param-
eter. An example of this can be found in the source code for perfcomp (Section 5.7).

groupspec.pro , Varun Bhalerao , 2013 -07 -17

Version : 2.30000

SVN Revision : $Rev: 371 $

----- Documentation for ./ groupspec.pro -----

PRO GROUPSPEC

Make module level spectra

Inputs (required):

infile : (string) input events file

pixlist : (int array) list of pixels for making combined spectrum

gainfile : (string) name of file with gains and offsets

if gainfile is not specified , make a combined

spectrum without any shifts.

[Energy] = [Channels] * gain + offset

Inputs (optional):

fitsext : (int) FITS extension number to read. Default =1

detid : (int) Id of detector for which count map should be

produced. Default =0

binsize : (float) binsize of output spectrum (in keV) Default =0.1

erange : (2-element float array)

Range of output spectrum in keV. Default = [0 ,200]

/longtext: Produce a text spectrum with comments

: Default is no comments , the channels are in binsize units

17



/help : Show this help text

Outputs:

plotspec : (string) Name of pdf file to save combined spectrum to

specfile : (string) Name of text file to save combined spectrum to

5.7 perfcomp

perfcomp is used for comparing the perf ormance of the CZTI modules. For a given data file (eg:
post-thermovac data), perfcomp locates the corresponding archival calibration (“old”) data set.
Pixels in the new data set are sorted by counts, and grouped into numgroups groups. Data for
the same pixel groups are also extracted from the archival data set. Then gaussian profiles are
fit to the new and archival data sets with fitline (Section 5.3). The code then writes text files
with a table stating the following quantities for each pixel group: counts in pixel group, counts
in line, old counts in group, old counts in line, new energy, new sigma, old energy, old sigma. It
also generates PDFs for each pixel group (Figure 4), showing the new and old spectra and the
line fits to them. Individual group plots are finally merged into a single .perfcompare.pdf file.

Figure 4: Comparing post-thermovac Am data for Quadrant 0, Module 5 with archival data.

These outputs can be further summarized by running the perfcomp summary code. The
perfcomp code supports following parameters:

perfcomp.pro , Varun Bhalerao , 2015 -03 -31

Version : 1.40000

SVN Revision : $Rev: 444 $

----- Documentation for ./ perfcomp.pro -----

pro perfcomp

INPUTS:

infile : (string) input .evt or .allspec.fits file

allspec : (bool) Specify if input file is .allspec.fits

Default file is assumed to be .evt file

18



fitsext : (int) FITS extension number to read. Default =1

Ignored for .allspec.fits files

quad : Quadrant number of the detector (0-3)

Required for locating correct reference data set

detid : (int) Id of detector for which count map should be produced

: Range 0 -- 15, default 0

temp : Temperature (e.g. ’05C’)

source : Source (e.g. ’Am2’ / ’Am’)

linepos : nominal position of line in keV

linesig : nominal sigma of line in keV

numgroups : Number of pixel groups to create (Default: 8)

clip_perc : Percentile point for clipping (0.5 = median , 1.0 = maximum)

Counts at this percentile are used as reference

cliplim : Multiplying factor for maximum allowed counts

For example , clip_perc = 0.5 and cliplim = 10 means pixels

with count rate above 10 times median are ignored

If clip_perc =1.0 and cliplim > 1 then no pixels are ignored

/help : print this message

OUTPUTS PARAMETERS:

outbase : (string) base name and path to be prepended to output files

binsize : (float) binsize of output spectrum (in keV)

plotrange : (2-element float array)

Range of output plot in keV. Default = auto

5.8 threshold

This program calculates threshold values (Lower Level Discriminator; LLD) by fitting an error
function (ERF9) to module spectra. The best–fit value and width (ERF sigma) are returned
in the parameters threshold and tsig. The threshold code uses modspec as the backend, hence
all modspec inputs are supported. Additionally, threshold can be given an input guess threshold
value and a range for fitting to data. Input and output parameters specific to threshold.pro are:

IDL > threshold , /help

threshold.pro , Varun Bhalerao , 2014 -05 -07

Version : 1.20000

SVN Revision : $Rev: 401 $

----- Documentation for ./ threshold.pro -----

PRO THRESHOLD

Calculate module thresholds

Inputs (required):

All inputs are of the same format as modspec

Inputs (optional):

threshold : (float) Initial guess threshold value (keV)

Default: first non -zero element

fitrange : Range in which to fit for exact threshold

(2 element float array)

Default: threshold +- 40 keV

Other flags:

show : Plot the fitrange and best -fit plots (in X server)

Outputs:

threshold : (float) Final fit threshold value (keV)

Will overwrite any input variable that was set

tsig : (float) Gaussian sigma of threshold fitting

This is the sigma of the "Error Function" fit

in fitrange.

Internally, this code calls modspec for creating spectra from the input files. All modspec

parameters are supported:

9ERF or Error Function is the integral of a Gaussian function.

19



----- Documentation for ./ modspec.pro -----

PRO MODSPEC

Make module level spectra

Inputs (required):

infile : (string) input events file or allspec.fits file

/allspec : Set /allspec to specify that input is a allspec.fits file

containing spectra of all pixels in that quadrant

fitsext : (int) FITS extension number to read. Default =1

Ignored if input is allspec

detid : (int) Id of detector for which count map should be

produced. Default =0

gainfile : (string) name of file with gains and offsets

if gainfile is not specified , make a combined

spectrum without any shifts.

[Energy] = [Channels] * gain + offset

sigfile : (string) name of file which has pixel energy

resolution information

ignorepix : (int array) list of pixels to be ignored

takes precedence over ignore_txt

ignore_txt : (string) File containing list of dead pixels

: produced by noisydead.pro

top : (float) fraction of pixels to coadd for spectrum

default = 1.0

binsize : (float) binsize of output spectrum (in keV)

mincounts : (int) minimum counts in a pixel for calculating its

spectrum. Default = 10

plotrange : (2-element float array)

Range of output plot in keV. Default = auto

/help : Show this help text

Outputs:

plotspec : (string) Name of pdf file to save combined spectrum to

specfile : (string) Name of text file to save combined spectrum to

energy : (double array) Optional output , x-axis (energies) of

the combined spectrum

spectrum : (double array) Optional output , y-axis (counts) of

the combined spectrum

20



Part 6

Appendix

A Sample testrecords.log file

# lines starting with # are ignored

# blank lines are also ignored

# initial trial files

# to be ignored

-1 raw /20110027 _102600_UNKNO_UNKNO_UNKNO_UNKNO_UNKNO_200sec_N+D_DATA.raw

-1 raw /20110027 _102900_UNKNO_UNKNO_UNKNO_UNKNO_UNKNO_400sec_N+D_DATA.raw

-1 raw /20110027 _104900_UNKNO_UNKNO_UNKNO_UNKNO_UNKNO_200sec_N+D_DATA.raw

-1 raw /20110402 _181400_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _181900_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _182300_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _182800_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _183300_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _183800_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _184300_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _185200_UNKNO_Am0_600V_010C_60keV_200.raw

-1 raw /20110402 _185700_UNKNO_Am_600V_010C_60keV_200.raw

# actual data begins

8 raw /20110402 _190300_UNKNO_Am_600V_010C_60keV_200.raw

9 raw /20110402 _190800_UNKNO_Am_600V_010C_60keV_200.raw

10 raw /20110402 _191300_UNKNO_Am_600V_010C_60keV_200.raw

11 raw /20110402 _191700_UNKNO_Am_600V_010C_60keV_200.raw

12 raw /20110402 _192100_UNKNO_Am_600V_010C_60keV_200.raw

13 raw /20110402 _192500_UNKNO_Am_600V_010C_60keV_200.raw

14 raw /20110402 _192900_UNKNO_Am_600V_010C_60keV_200.raw

15 raw /20110402 _193300_UNKNO_Am_600V_010C_60keV_200.raw

0 raw /20110402 _193800_UNKNO_Am_600V_010C_60keV_200.raw

1 raw /20110402 _194200_UNKNO_Am_600V_010C_60keV_200.raw

2 raw /20110402 _194600_UNKNO_Am_600V_010C_60kev_200.raw

3 raw /20110402 _195000_UNKNO_Am_600V_010C_60kev_200.raw

5 raw /20110702 _110300_UNKNO_Am_600V_010C_60keV_200.raw

6 raw /20110702 _110700_UNKNO_Am_600V_010C_60keV_200.raw

7 raw /20110702 _111200_UNKNO_Am_600V_010C_60keV_200.raw

4 raw /20110702 _111800_UNKNO_Am_600V_010C_60keV_200.raw

# no background files in this run

B Sample metadata in text files

Text files created by most data analysis codes have metadata at the top, commented out with
the # symbol. A sample of metadata and the first few data rows for a gain-offset file created
by the linearity IDL code for FQ1, Module 6 at 5◦C is given below. For the purpose of this
document, some long lines have been continued on a lower line. These are demarcated with · · ·,
and appear as a single line in the actual file (FQ1 mod06 ID17285 05C.gain.txt).

# Gain / Offsets file

# Created by : linearity.pro, Varun Bhalerao, 2014-06-09

# Version : 3.20000

# SVN Revision : $Rev: 425 $

# Module ID : 17285

# Fits Extension : 1

# Data sets: /data2/cztidata/vssc/analysis/gainoffset/filelist/· · ·
· · · · · ·FQ1 modid 17285 pos 06 05C lin.files.lst

# filename energy(kev) 1sigma linewidth(channels)

# /data2/cztidata/vssc/FQ4/20140131 FQ4 Co2 05C 4hrs/alphaveto/· · ·
· · · · · ·20140131 999999 MULTI Cd+Co2 600 05C 10keV regular.allspec.fits.gz 122.06 45.0

# /data2/cztidata/vssc/FQ4/20140204 FQ4 Cd 05C 4hrs/alphaveto/· · ·
· · · · · ·20140204 115525 MULTI Am3+Cd 600 05C 10keV regular.allspec.fits.gz 88.16 44.0

# /data2/cztidata/vssc/allquad/20140316 MULTI Ba cal401 05C 2.5hrs/alphaveto/· · ·

21



· · · · · ·20140316 120041 MULTI Ba 600 05C 10keV regular.Q1.allspec.fits.gz 81.00 43.0

# /data2/cztidata/vssc/allquad/20140316 MULTI Co2 cal401 05C 1hrs/alphaveto/· · ·
· · · · · ·20140316 171357 MULTI Co2 600 05C 10keV regular.Q1.allspec.fits.gz 122.06 45.0

# /data2/cztidata/vssc/allquad/20140317 MULTI Am3 cal401 05C 2.5hrs/alphaveto/· · ·
· · · · · ·20140317 120001 MULTI Am3 600 05C 10keV regular.Q1.allspec.fits.gz 59.54 41.0

# /data2/cztidata/vssc/allquad/20140318 MULTI Cd cal401 05C 2.5hrs/alphaveto/· · ·
· · · · · ·20140318 071400 MULTI Cd 600 05C 10keV regular.Q1.allspec.fits.gz 88.16 44.0

# /data2/cztidata/vssc/FQ4/20140131 FQ4 Co2 05C 4hrs/alphaveto/· · ·
· · · · · ·20140131 999999 MULTI Cd+Co2 600 05C 10keV regular.allspec.fits.gz 136.47 48.0

# /data2/cztidata/vssc/FQ4/20140131 FQ4 Co2 05C 4hrs/alphaveto/· · ·
· · · · · ·20140131 999999 MULTI Cd+Co2 600 05C 10keV regular.allspec.fits.gz 22.16 60.0

# /data2/cztidata/vssc/allquad/20140316 MULTI Co2 cal401 05C 1hrs/alphaveto/· · ·
· · · · · ·20140316 171357 MULTI Co2 600 05C 10keV regular.Q1.allspec.fits.gz 136.47 48.0

# /data2/cztidata/vssc/allquad/20140316 MULTI Co2 cal401 05C 1hrs/alphaveto/· · ·
· · · · · ·20140316 171357 MULTI Co2 600 05C 10keV regular.Q1.allspec.fits.gz 22.16 60.0

#

# Input gain-offset file:/data2/cztidata/vssc/analysis/go AmCo/FQ1/05C/· · ·
· · · · · ·FQ1 modid 17285 GO AmCo 05C allquad.txt

# Output gain-offset file (this file):/data2/cztidata/vssc/analysis/gainoffset/FQ1/05C/· · ·
· · · · · ·FQ1 mod06 ID17285 05C.gain.txt

# Input gain/offset parameters:

# Mean gain (keV / channel) : 0.05589

# Variation in gain : 0.00123

# Mean offset : 4.67

# Variation in offset : 1.17

# Revised output gain/offset parameters:

# Mean gain (keV / channel) : 0.05644

# Variation in gain : 0.00124

# Mean offset : 4.18

# Variation in offset : 1.08

# [Energy] = [Channels] * gain + offset

#

# Good fits could not be obtained for 9 pixels

# Their gains and offsets were replaced by mean gain-offset values

# Their error bars were set to zero

# The 9 pixels are: 4 36 48 50 61 182 194 226 244

# Gain Gain Err Offset Offset Err

0.05754 0.00050 2.312 0.812

0.05648 0.00047 2.923 0.728

0.05704 0.00025 2.902 0.354

0.05626 0.00026 4.358 0.409

0.05646 0.00000 4.171 0.000

C List of all IDL codes

alphaspec ctmap.pro

alphaspec.pro

alphastats.pro

alphaveto.pro

apixmap.pro

background analysis.pro

backspace.pro

basicproducts.pro

centbox.pro

centroid.pro

checkmod centfile.pro

countmap.pro

countrate.pro

data search.pro

dead list.pro

dead props.pro

ene res.pro

ene res txtfile.pro

fitline.pro

fitline run.pro

gainoffset.pro

22



gainplots.pro

getmod.pro

goAmCo.pro

go cluster

go cluster.r

go corr mod.pro

groupspec.pro

inside.pro

linearity.pro

linearity run.pro

lineprof.pro

lin quadrant.pro

logup.pro

modid.pro

modres.pro

modspec.pro

noisydead.pro

noisy list.pro

noisy props.pro

parsefilename.pro

peakfind.pro

perfcomp.pro

perfcomp summary.pro

perf energy.pro

pixgroup.pro

pixsep.pro

pixspec.pro

plotvispix.pro

procpix.pro

ps2pdf idl.sh

qe calch.pro

qe calc.pro

quadprod.pro

rcspec.pro

redist.pro

rmserror.pro

rms.pro

spec plots.pro

splitproc.pro

stats.pro

temp res.pro

temp res txtfile.pro

temp res txt.pro

threshold.pro

totvetospec.pro

23


	1 Overview
	Background
	Data flow

	2 Data reduction
	Basic codes
	proc_raw2evt

	3 Data analysis
	basicproducts
	quadprod

	4 Data products
	Dead-noisy lists
	Dead lists
	Noisy lists

	Flickering pixels
	Spectroscopically bad pixels
	Gain-offset calculation
	gainoffset
	linearity

	Gain–offset corrected spectra
	Module stability tests

	5 Codes
	alphaveto
	apixmap
	List mode
	Counts mode

	fitline
	peakfind
	rcspec
	groupspec
	perfcomp
	threshold

	6 Appendix
	Sample testrecords.log file
	Sample metadata in text files
	List of all IDL codes


