Baseline Science with ASTROSAT: Magnetic CVS

V Girish
ISRO Satellite Centre, Bangalore - 17

Magnetic CVs

- Interacting White dwarf binaries with high B
- Two types
 - Polars
 B ~ 80-100 MG
 Highly synchronous rotation
 - Intermediate Polars B \sim 10 MG $P_{spin}/P_{orb} \sim 0.1$
- Accretion follows magnetic field lines
- Cyclotron cooling after shock

ASTROSAT Baseline Science

Search for QPO from CVs

- QPOs are seen in optical
- One very weak signal in RXTE data, no confirmed QPO till
- LAXPC with 4 times larger area

Confirmation oX-RAY QPOsn CVs?

If confirmed

Optical and X-ray connection
Linkage with QPOs from other compact objects

Disc-less versus Disc-fed accretion in IPs

SXT Timing

Disc-less Geometry (rare)
 signal at spin, first and second beat frequency...
 (ω, ω-Ώ, 2ω-Ώ)

Disc-fed Geometry
 Only spin frequency component

Can we resolve this using UV lightcurve?

ower (Counts²)

Hard X-ray emitting CVs discovered by INTEGRAL

- Many discovered by INTEGRAL (ASTROSAT CZTI?)
- Mainly Intermediate polars
- Properties are not well known
- X-ray timing and spectral information from LAXPC & SXT
- UV timing ++

Two Types of Spectra

Spectroscopy from SXT

CVs show two types of spectra

(Mukai et al.)

Cooling flow and Photo-ionization

 Magnetic & Non-magnetic (except Ex Hya)

 Can we increase the sample size (only 7)?

Phabs * (mkcflow+gauss)

Two Types of Spectra

Spectroscopy from SXT

CVs show two types of spectra (Mukai et al.)
 Cooling flow and Photo-ionization

 Magnetic & Non-magnetic (except Ex Hya)

Can we increase the sample size (only 7)?

 $N_H = 1.1 \times 10^{11} \text{ cm}^2$ KT = >80 keV $SXT_{2-10} = 0.17 \text{ cnt/s}$

2.5 x 10¹ erg/cm/s

phabs * pcfabs(apec+mkcflow+gauss)

Soft X-ray excess and UV?

SXT Spectra

- Partial covering absorption ?
- UV spectral information can provide clues?

Thanks